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Abstract—Friction factor–Reynolds number correlations were established for the laminar and turbulent
pipe flows of non-Newtonian slurries, and rheological model specific equations for delineating
laminar–turbulent transition were derived. The correlations are based on extensive experimental data on
the flow of concentrated slurries of laterite and gypsum through capillary tubes and also straight pipe
test sections in a slurry pipeline flow facility. The capillary tube diameters ranged from 0.103 to 0.400 cm,
and the test pipe diameters were 1.25, 2.5 and 5.0 cm (standard 1/2, 1 and 2 in pipe). For laminar flow
the friction factor–Reynolds number relationship appropriate to the three-parameter Sisko model was
derived, as rheometric measurements had established that this empirical rheological model did the best
job of describing the shear stress–shear rate dependence for the test slurries, at all concentrations, over
the whole measured range of shear rates; from about 1 to 25,200 s−1. For the turbulent regime it is
established that the Blasius, inverse (1/4)th power friction factor–Reynolds number form is appropriate,
with Reynolds number defined in terms of the high-shear limiting viscosity ha and the density of the
suspension. These friction loss correlations are significant because the Sisko model, which combines a
lower shear power-law region with a high-shear Newtonian asymptote, coincides with the observed shear
stress–shear rate behavior of most highly-loaded fine particulate slurries over precisely the range of shear
appropriate to pipeline transport. 7 1998 Elsevier Science Ltd. All rights reserved

Key Words: non-Newtonian suspensions, straight pipe flow, friction factor, laminar, turbulent,
laminar–turbulent transition

1. INTRODUCTION

The principal results presented here include friction factor–Reynolds number correlations for the
laminar as well as turbulent flow regimes for non-Newtonian slurries obeying the Sisko model, and
rheological model-specific equations for estimating laminar–turbulent transition. The friction
factor–Reynolds number correlation for the laminar regime is based on solution of the flow for
the Sisko fluid, and involves an appropriately modified Reynolds number, which reduces to the
standard form in the Newtonian limit. In the turbulent regime it is found that the Blasius, inverse
(1/4)th power friction factor relation using a Reynolds number based on the infinite-shear viscosity
does a good job of predicting friction loss. New equations are derived for predicting
laminar–turbulent transition for the flow in straight pipes of non-Newtonian slurries obeying the
power-law and the Sisko models. In the latter case the relationship is implicit, and procedures for
carrying out calculations of the transition Reynolds number, including explicit asymptotic forms
of the relationships, are derived.
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In laminar flow the correlation developed in this work predicts the experimentally measured
friction factors by an absolute average deviation of 7%, and out of a total of 480 data points
pertaining to flows through pipes ranging from a diameter 0.1 to 5.0 cm, only six data points had
deviations exceeding 30%. For turbulent flow the absolute average deviation for a total of 922 data
points was less than 11%, and only 35 data points had deviations exceeding 30%. These results
are very important because, aside from the mineral slurries used as the basis for the current flow
studies, the Sisko model evidently does a good job of describing the shear stress–shear rate
dependence for many other industrially important, concentrated, fine-particulate, non-Newtonian
slurries over precisely the range of shear most appropriate to flow in pipes. For example, extensive
rheological measurements on concentrated coal–water slurries, containing narrow as well as broad
size distributions of particles, in many different size ranges, result in flow curves which follow the
Sisko model (Attal 1989; Turian et al. 1992). Over the range of shear applicable to pipeline flow,
the flow curves for most concentrated non-Newtonian slurries are usually found to possess a
power-law region covering the lower and the intermediate shear rate ranges, followed by an
asymptotic approach to a high-shear Newtonian limit. Not only does the Sisko model embody these
attributes and describe such behavior well, it also does so over the entire range of shear rates
attainable even in the highest-shear rheometer, and with a unique set of unambiguously determined
model parameter values. For, unlike other three-parameter empirical models, one of the model
parameters, ha, is determined independently, as it is given by the high-shear asymptote of the
viscosity–shear rate plot. Accordingly, the value of ha used in the model stands for an intrinsic
rheological property of the suspension; one which is instrument-geometry indifferent, and depends
upon suspension microstructure. The remaining two model parameters, embodying the power-law
part, are then determined to provide the best overall fit to the rheometric data over the whole range
of shear.

1.1. Empirical non-Newtonian models

The experimentally determined shear stress (t)–shear rate (gt ) data for the test slurries, using both
rotational and mainly capillary rheometers, were used to fit empirical rheological models. We tested
the two-parameter power-law, Bingham plastic and Casson, and the three-parameter
Herschel–Bulkley and Sisko models. These are given by the following equations.

Power-law model: t=K	 gt ñ [1]

Bingham plastic: t= tb + hpgt [2]

Casson model: t1/2 = t1/2
c + (hcgt )1/2 [3]

Herschel–Bulkley model: t= th +Khgt n' [4]

Sisko: t= hagt +mgt n. [5]

[2], [3] and [4] include a yield-stress parameter, tb, tc, and th, respectively. However, curve-fitting
shear stress–shear rate data to determine these yield-stress parameters will not, and generally does
not, insure that a yield stress, as an intrinsic, instrument-geometry indifferent material property
has been determined or, for that matter, exists. Such curve-fitted values must, unless otherwise
confirmed, be viewed merely as model parameters. A detailed discussion of determination of yield
stresses for suspensions has been given by Turian et al. (1992). Model-specific friction
factor–Reynolds number relationships for the pipeline flow of non-Newtonian fluids following
some of the above empirical models have been proposed.

1.2. Flow of non-Newtonian fluids through straight pipe

Friction factor–Reynolds number correlations for laminar non-Newtonian flow through straight
pipes are generally based on solutions of the Navier–Stokes equations appropriate to the applicable
rheological model. Such solutions abound in the literature and are summarized in standard texts
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(Bird et al. 1960, 1987). Unlike the case of a Newtonian fluid, the viscosity of a non-Newtonian
fluid varies with shear and, therefore, it is not obvious what reference viscosity is most appropriate
for defining the Reynolds number. Metzner and Reed (1958) resolved this problem by defining a
generalized Reynolds number, Reeff, in terms of a so-called effective viscosity, heff, chosen so as to
give a friction factor–Reynolds number dependence in laminar flow which is formally the same as
for Newtonian fluids; one which would also reduce identically to the Newtonian form, f=16/Re,
in the limit. Using the defining equation for the friction factor f in terms of the shear stress at the
pipe wall, tw, we have

f=2tw/rV2 = [16(heff/DVr )][tw/heff(8V/D)]=16Reeff [6]

in which V is the average velocity in the pipe and r is the density of the slurry. This equation clearly
suggests that the effective (or apparent) viscosity is to be taken as the ratio of wall shear stress,
tw, to the apparent shear rate, (8V/D):

heff = tw/(8V/D). [7]

We note that (8V/D) is the value of the shear rate at the pipe wall for a Newtonian fluid only.
For laminar power-law fluid flow in a pipe, the wall shear rate is given by

gt w = [(3ñ+1)/4ñ](8V/D) [8]

and the corresponding shear stress is given by

tw =K	 [(3ñ+1)/4ñ]ñ(8V/D)ñ. [9]

Capillary rheometer data, under laminar flow conditions, are usually presented as plots of
log(DDP/4L) vs log(8V/D), which are referred to as flow curves. The local value of the slope to
the flow curve is defined as n'=d log(tw)/d log(8V/D). Over segments of the shear rate range where
n' is constant (i.e. when the curve is a straight line, signifying local power-law behavior), one
obtains by integration

tw =K '(8V/D)n' [10]

in which the constant of integration K ' is the intercept at (8V/D)=1. Clearly, values of n' and
K ' will depend upon the segment of the flow curve being approximated. A generalized Reynolds
number in terms of n' and K ' is obtained using [7] and [10] as

Rem =Dn'V(2− n')r/[8(n'−1)K ']. [11]

Of course, n' is constant when power-law behavior prevails, in which case the relation with the
model parameters from [1] are n'= ñ and K '=K	 [(3ñ+1)/4ñ]ñ.

For the Sisko model [5], the relationship corresponding to [8] is implicit. From [5] the shear stress
at the pipe wall is given by

tw = hagt w +mgt nw = hagt w[1+mgt (n−1)
w /ha]= hagt w(1+X) [12]

in which X=[mgt (n−1)
w /ha]. The relation between shear rate at the wall, gt w' and (8V/D) is obtained

from solution of the equations of motion for steady laminar tube flow (Bird et al. 1960, p. 70),
and is given by

gt w = (8V/D)/G(n, X). [13]

The function G(n, X) is given in terms of n and X=mgt (n−1)
w /ha by

G(n, X)=61+4$0n+2
n+31X+02n+1

2n+21X2 +0 n
3n+11X3%7/(1+X)3. [14]
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Now [6] is used to define the generalized Reynolds number for the Sisko fluid. Thus

f=2tw/rV2 =16[ha/DVr][tw/ha(8V/D)]

=(16/Rea)[tw/hagt wG(n, X)]

=(16/Rea)[(1+ X)/G(n, X)]=16/ReS [15]

in which the expression from [12] was used, and Rea =DVr/ha.
When m=0 or n=1, the Sisko model reduces to the Newtonian case, and [(1+X)/G(n, X)]

in [15] reduces to 1. In order to use these equations one needs to calculate X for any given value
of (8V/D). The value of X can be determined by iterative solution of the transcendental relation
given by [13]. Newton–Raphson, graphical as well as asymptotic methods of inverting [13] can be
used.

The accessibility of laminar non-Newtonian pipe flow to analytical solution provides the
framework for defining model-specific modified Reynolds numbers, and indeed results in the actual
friction factor–Reynolds number relationship. In turbulent flow, however, no analytical solutions
are available and the friction factor–Reynolds number dependence is uncertain. Empirical
correlations for the friction factor–Reynolds number dependence in turbulent non-Newtonian pipe
flow have been proposed by Dodge and Metzner (1959) for power-law fluids, by Hanks and Dadia
(1971) for Bingham plastics, and by Round and El-Sayed (1983) for Herschel–Bulkley fluids,
among others.

1.3. Laminar–turbulent transition for non-Newtonian fluids

The ratio of energy input to energy dissipation within a fluid element has been widely used to
characterize the stability of non-Newtonian flow through straight pipes. While the value of this
ratio depends upon whether it is determined at a point (local) or over the entire flow (integrated),
it is usually assumed that laminar–turbulent transition occurs at the same value of the ratio for
non-Newtonian fluids as it does for Newtonian fluids. For Newtonian fluids both local and
integrated stability parameters pertaining to this ratio are expressed in terms of transition Reynolds
numbers. However, since the definition of Reynolds number for non-Newtonian fluids is
model-dependent, so are the laminar–turbulent transition criteria.

Ryan and Johnson (1959) defined the local stability criterion in general in terms of the velocity
distribution, u(r), in the pipe as follows:

Z=[Dru(−du/dr)]/2tw =Dru/[2 w/(−du/dr)]. [16]

It is clear that Z has the form of a Reynolds number with no reference to a fluid model. It vanishes
at both the pipe wall and the centerline, attaining a maximum at some intermediate position. For
a Newtonian fluid the laminar flow solution indicates that Z attains a maximum at the reduced
radial position r/R=1/z3, with

Zmax =z(4/27)(DVr/m)=0.3849Re. [17]

Taking the transition Reynolds number for laminar flow as Rec =21,000 gives Zmax =808. Since
Z is not restricted to any fluid model, we will assume that it is generally applicable, and take it
to hold for all fluids.

Using [16] and [17] together with the velocity distribution u(r) appropriate to the rheological
model, laminar–turbulent transition criteria are derived. Such results have been obtained for the
power-law by Ryan and Johnson (1959), for the Bingham plastic by Hanks (1981), and for the
Casson and Herschel–Bulkley fluids by Hanks and Ricks (1974).

An alternative criterion, which according to Mishra and Tripathi (1971) does a better job than
the local stability parameter particularly for non-Newtonian fluids with a yield stress, is the
integrated stability parameter, given by

V=Em/tw =
1

(pR2V)tw g
R

0

ru2

2
2pur dr. [18]
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Evidently Em, which is the mean kinetic energy per unit volume of fluid, does account for the
stabilizing effect in plug flow. For Newtonian fluids Em = rV2, and for non-Newtonian fluids we
let Em = rV2C, with C given by

C=g
1

0 0u
V1

3

0 r
R1 d0 r

R1. [19]

Since we require that f=16/Reeff in laminar non-Newtonian pipe flow, and taking Recritical = 2100
for Newtonian fluids when C=1, we get

Reeff-critical = 2100/C. [20]

To apply [20] to different fluids, the model-specific modified Reynolds number, which obeys the
relation f=16/Re in laminar flow, must be used.

2. EXPERIMENTAL WORK AND FRICTION LOSS CORRELATIONS

Pressure drop–flowrate data for the flow in the straight pipe of our test slurries were taken using
the test loops in our slurry pipeline facility. These were supplemented with the pressure
drop–flowrate data obtained in conjunction with our rheological measurements on the slurries
using the capillary tube rheometer system. Clearly, the latter data fell exclusively in the laminar
flow regime. The starting point in our analysis of the straight pipeline flow data was to reduce the
pipe and the corrected capillary flow data to the wall shear stress–apparent shear rate form. The
results were then used to develop, and test, friction factor–Reynolds number correlations for
non-Newtonian suspension flow in straight pipelines, and to establish and test criteria for predicting
laminar–turbulent transition.

2.1. Slurry pipeline flow facility and capillary rheometer

The slurry flow facility used in our studies is a pilot pipeline having 1.25, 2.5 and 5.0 cm (standard
1/2, 1 and 2 in pipe) diameter flow loops, containing a variety of test fittings as well as straight
pipe test sections, all with appropriately long entry and exit sections. The pilot pipeline had two
centrifugal slurry pumps, the larger powered by a 30 HP and the smaller powered by a 10 HP
speed-controlled electric motor. The pumps could be operated singly as well as in series. Flow rates
in the 2.5 and 5.0 cm test loops were measured using 2.5 and 5.0 cm magnetic flowmeters, with
magnetic heads installed in vertical sections of the test loop, and calibrations carried out using water
and the actual slurries. Flow rates in the 1.25 cm test loop were measured using a weigh tank.
Multitube differential manometers connected through solid traps, both of which were designed by
us, were used to measure pressure drops as well as axial pressure profiles. A detailed description
of the slurry flow test facility is given by Ma (1987).

The capillary tube rheometer, designed in our laboratory, is a thermostated apparatus capable
of being fitted with a broad array of individually thermostated capillary tubes of different diameters
and lengths, and equipped to operate over an extremely broad range of reservoir pressures (shear
stresses), from below atmospheric pressure to 70 atm. A detailed description of the rheometer, the
automatic pressure and flow-rate sensing apparatus, and the data acquisition and analysis PC has
been presented by Turian et al. (1992).

2.2. Rheological and flow experiments

The shear stress–shear rate dependencies of all slurries were determined mainly with the capillary
rheometer. To check on consistency, a few data points, at low shear, were taken using a Brookfield
rotational viscometer. Dimensions of the capillary tubes used, made of precision-bore stainless steel
tubing, are listed in table 1. Data analysis, including corrections for end and/or wall effects, was
in accordance with the methods described in detail by Turian et al. (1992).

We attempted to fit the shear stress–shear rate data with each of the empirical non-Newtonian
models given above by [1]–[5]. A concise summary of our findings is as follows: (1) The power-law
model [1] was only capable of describing these flow curves over at most less than three cycles in
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Table 1. Dimensions of capillary tubes and test pipes

Pipe I.D. Length/diameter Roughness
(cm) Material ratio (cm)

Capillary tubes
0.103 stainless 295.8 443.7
0.145 stainless 314.4 419.2
0.217 stainless 281.1 421.7
0.315 stainless 225.4 321.9
0.400 stainless 203.1 253.9

Test pipelines
1.533 galvanized 139.2 0.000038
2.775 galvanized 98.8
5.263 galvanized 57.9

2.684 black steel 113.6 0.000795
5.157 black steel 59.1 0.001099

shear rate, for example, up to less than 100 s−1. (2) The Bingham plastic model [2] was only suitable
over the higher shear rate range, where high-shear limiting Newtonian behavior had been attained,
and then only with purely curve-fitted values for the model parameter tb. (3) The Casson model
[3] parameters were determined by least-squares fitting of the data over the entire range of shear
for all test suspensions, resulting in relatively better fits than the power-law or Bingham plastic,
albeit with purely curve-fitted values for the model parameter tc. (4) The Herschel–Bulkley [4]
parameters were determined by a trial and error procedure, in which assumed values of the
parameter th were tried until logarithmic plots of (t− th) against g gave straight lines, which were
then used to determine the remaining two model parameters. The trial procedure was tedious and
the results were found to be very sensitive to the magnitude of the assumed th. Indeed, of all models
tested the Herschel–Bulkley was found to be the least satisfactory, because there is apparently on
unambiguous way to determine parameter values for the model.

No such ambiguity exists in relation to the Sisko model. The high-shear limiting viscosity, ha,
is an intrinsic material property as well as a model parameter. It is determined independently of
the other model parameters from the asymptote at high shear rate of the shear stress–shear rate
or viscosity–shear rate plot. Such plots for fine particulate suspensions almost invariably seem to
approach limiting Newtonian behavior at high enough shear rates, usually preceded by a power-law
region. In fact it was found that the Sisko model [5] did the best overall job of describing the shear
stress–shear rate data over the whole shear range for all concentrations.

Table 2. Sisko model parameters for test slurries

Concentration
ha n

Material vol.% wt.% (poise) m† (—)

Titanium 17.3 45.3 0.0289 2.527 0.2310
dioxide 23.4 54.3 0.0423 5.912 0.1912

30.7 63.7 0.8000 17.36 0.1450
38.1 70.9 0.2331 63.02 0.0113
41.7 74.0 0.3924 31.75 0.0290

Laterite 3.6 9.9 0.0145 3.965 0.2493
5.7 15.1 0.0178 19.79 0.1723
8.3 21.0 0.0224 55.53 0.1590

12.7 30.0 0.0331 162.57 0.1419

Gypsum 10.7 21.8 0.0143 0.2958 0.3466
19.5 36.1 0.0200 3.8561 0.1996
25.2 44.0 0.023 5.6433 0.2995
30.6 50.7 0.0346 9.6570 0.3025

†m has units of g cm−1 s(n−2).
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Figure 1. Flow curves (DDP/4L) vs (8V/D) for 3.6 vol.% laterite suspension. Solid curve—Sisko model
[5]: ha =0.0145; m=3.965; n=0.2493. Dashed line—[10]: K '=2.45; n'=0.415.

The values of the Sisko model parameters are given in table 2. With these parameter values the
model predicts the shear stress–shear rate data for the test suspensions with absolute average per
cent deviations of between 3.8% to a high of 12.1%. Indeed, the bulk of the data in all cases fell
within a 10% band about the model curve. The solid curves in figures 6–8 represent the Sisko model
fits to the data, using the parameter values given in table 2. It should be reiterated that the model
parameters listed in table 2 are solely based on the shear stress–shear rate data obtained under
strictly laminar flow conditions using only our capillary rheometer and the Brookfield viscometer
with the rotating cylinder element.

The experiments on slurry flow through straight pipes were carried out with the temperature
maintained at 252 1°C. Flow rates were measured using the magnetic flowmeters, which were
calibrated for each concentration of the test slurry. At each pump speed setting, the data taken
included the flow rate, the slurry temperature and the pressure drops over the straight pipeline test
sections. In addition, for each flow rate the discharge concentration of solids was determined by
collecting samples at the discharge point of the flow loop. These were used as a check on possible
solids settling within the flow loop, in which case the data would have been rejected. The data were
taken only after steady flowmeter and manometer readings had been established. Extensive flow
experiments with water were performed to calibrate the test pipeline, to use as a reference, and
to estimate wall roughness by comparison with standard friction factor–Reynolds number
relationships. The water flow experiments were periodically repeated to ascertain whether changes
in pipe and/or fitting characteristics had occurred as a result of particle erosion. Primary data and
detailed accounts of the analyses to ascertain hydraulic diameters and establish surface roughness
values are given by Ma (1987).

All the straight pipe flow data were reduced to, and plotted in, the form of log(DDP/4L) vs
log(8V/D), as shown in figures 1 to 8. As stated earlier, (DDP/4L) is the actual value of the shear
stress at the pipe wall, tw, but (8V/D) is the apparent shear rate, coinciding with the actual wall
shear rate only in the case of Newtonian fluids. For each suspension concentration the test samples
used for rheological characterization in the capillary rheometer were taken from the pipeline flow
loop reservoir upon completion of the pipeline flow experiments for the given concentration. Thus
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Figure 2. Flow curves (DDP/4L) vs (8V/D) for 5.7 vol.% laterite suspension. Solid curve—Sisko model
[5]: ha =0.0178; m=19.79; n=0.1723. Dashed line—[10]: K '=9.90; n'=0.345.

the rheological measurements were carried out on the same suspensions, which had the same
preshearing history, as the suspensions in the pipeline experiments. Superposition of the pipeline
and the capillary tube data in the form of the logarithmic plots of wall shear stress against apparent

Figure 3. Flow curves (DDP/4L) vs (8V/D) for 8.3 vol.% laterite suspension. Solid curve—Sisko model
[5]: ha =0.0224; m=55.53; n=0.1590. Dashed line—[10]: K '=41.80; n'=0.274.
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Figure 4. Flow curves (DDP/4L) vs (8V/D) for 12.7 vol.% laterite suspension. Solid curve—Sisko model
[5]: ha =0.0331; m=162.57; n=0.1419. Dashed line—[10]: K '=105.2; n'=0.252.

shear rate, figures 1–8, would reveal any possible discrepancies between the data from the two
sources. For example, the plots in figure 3 for the 8.3% laterite and those in figure 8 for the 30.6%
gypsum suspensions show some differences between the capillary tube and pipeline flow data. These
differences were due to reversible rheological (thixotropy) and/or irreversible chemical (hydration,
swelling) time-dependent effects.

It is clear from the plots in figures 1–8 that for each concentration the data points for laminar
flow seem to define a straight line formed from the superposition of the data points for different
diameters over the lower apparent shear rate range. Turbulent flow data for each diameter, on the
other hand, seem to form individual, essentially parallel straight-line branches of clearly steeper
slopes than the laminar flow lines. The transition from laminar to turbulent branch for each
diameter seems to be smooth and marked by a fairly well-defined bend in the data plots.

Curve fits of the Sisko model to the laminar flow regions of the data are represented by the solid
lines in figures 1–8. It must be emphasized that these solid lines are calculated from the Sisko model
parameters determined solely on the basis of the rheological data obtained using our capillary tube
rheometer and the Brookfield viscometer. To convert wall shear rates, gw, to the corresponding
apparent shear rates, (8V/D), we use [13], as described earlier.

2.3. Friction factor–Reynolds number correlations for the Sisko model

We used the pressure drop data to establish friction factor–Reynolds number correlations for
laminar as well as turbulent flow for Sisko model fluids, together with model-specific relationships
for predicting laminar–turbulent transition. It was pointed out earlier that in laminar flow we use
the solution to the equations of motion for steady tube flow to define a model-specific, modified
Reynolds number which formally gives the same friction factor–Reynolds number dependence as
for Newtonian fluids, and reduces to the Newtonian relationship in the limit. For laminar flow the
friction factor–Reynolds number relationship for the Sisko fluid is taken to be the same as that
given by [15], namely

f=(16/ReS)= (16/Rea)[(1+ X)/G(n, X)].
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In order to use [15] we need to be able to determine X when the value of the apparent shear
rate (8V/D) is given. This is done through solution of the implicit relationship given by [13]. When
we eliminate gw in [13] using X=mg(n−1)

w /ha, we get

(m/ha)1/(n−1)(8V/D)=X1/(n−1)G(n, X). [21]

The form in [21] is suitable for direct graphical solution for X given the value of the apparent shear
rate (8V/D), and the rheologically determined model parameters m, n and ha; for example using
plots of X1/(n−1)G(n, X) against X for various values of the Sisko model index n. Alternatively, one
may use various iterative methods, e.g. Newton–Raphson, and/or available computer programs.
We have used both methods, and we have also developed asymptotic forms providing explicit
relationships between X and (8V/D) in various limits. In using an iterative scheme, we have taken
as the initial value X=X0 given by

X0 =mg(n−1)
w0 /ha =m[(8V/D)(3n+1)/4n](n−1)/ha. [22]

Reference to [8] indicates that this is the same expression for the wall shear rate as for the power-law
fluid with the Sisko parameters m and n. Figure 9 depicts the comparison between [15] and the
experimental friction loss data.

2.4. Friction factor correlation for turbulent pipe flow of a Sisko fluid

Continuing with the Sisko model as a consistent framework for correlating friction losses for
the flow of non-Newtonian slurries through straight pipes, we attempted to correlate our turbulent
flow data using the form f= f(Rea). Plots of f against Rea, in the turbulent regime, did confirm
that the friction factors in this region were determined solely by the Reynolds number based on
the high-shear limiting viscosity ha. Furthermore, we found the dependence to be very closely
approximated by the Blasius form given by

f=0.0791Re−1/4
a . [23]

Figure 5. Flow curves (DDP/4L) vs (8V/D) for 10.7 vol.% gypsum suspension. Solid curve—Sisko model
[5]: ha =0.01426; m=0.2958; n=0.3466. Dashed line—[10]: K '=0.0185; n'=0.975.
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Figure 6. Flow curves (DDP/4L) vs (8V/D) for 19.5 vol.% gypsum suspension. Solid curve—Sisko model
[5]: ha =0.020; m=3.856; n=0.1996. Dashed line—[10]: K '=0.924; n'=0.847.

[23] is shown superimposed in figure 9 together with the experimental data for turbulent flow. The
detailed comparison between experiment and [15] for laminar flow, and [23] for turbulent flow, is
summarized in table 3, which also depicts the number of data points falling within various per cent
deviation bands. The laminar flow data are comprised of a total of 480 points pertaining to flow
through five different sizes of capillary tubes with diameters ranging from 0.103 to 0.400 cm, and
also through 1.25, 2.5 and 5.0 cm diameter pipelines. The turbulent flow data consist of 922 points
pertaining to flow mainly through the 1.25, 2.5 and 5.0 cm diameter pipelines.

2.5. Laminar–turbulent transition for Sisko fluids based on local stability

We derive laminar–turbulent transition relationships for the Sisko fluid based on both local and
integrated stability criteria. To use the local stability criterion, given by [16], we first derive an

Table 3. Comparison of friction factor correlations with experiment – Sisko fluid

Laminar flow Turbulent flow

[15]: f=16/ReS [23]: f=0.0791 Rea
−1/4

Total no. of data 480 922

Abs. av. % dev. 7.2 11.0

No. of data in % dev. band
0–10% 371 498

10–20% 77 324
20–30% 26 65
q30% 6 35

%Dev.=100 [(calc.− exp./exp.].
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expression for the velocity distribution in pipe flow of a Sisko fluid. Denoting, as before, the velocity
distribution by u(r), and the shear rate as g=(−du/dr), we have

u(r)=g
u

0

du=g
r

R0du
dr1 dr=g

R

r

g dr. [24]

Clearly, we assume that the no-slip condition at the pipe wall holds, i.e. u(R)=0. Integrating the
last integral by parts, using the result r=(R/tw)t obtained from the momentum balance on the
flow (Bird et al. 1960), and replacing t by its expression in terms of g given by the Sisko model,
we get

u(r)=Rgw − rg−(R/tw)g
gw

g

(hag+mgn+1) dg

u(r)=Rgw61− (hagw/tw)(j2 −Xjn+1)− (hagw/tw)g
1

j

(j+Xjn) dj7 [25]

in which j=(g/gw). We note here that the relationship between (r/R) and the reduced shear rate,
j, used to effect the reduction from [24] to [25] is, in accordance with the Sisko model, given by

(r/R)= (hagw/tw)(j+Xjn)= (j+Xjn)/(1+X). [26]

When the integration in [25] is carried out, gw is eliminated using [13] and [14], and the quantity
(hagw/tw) is replaced by 1/(1+X) as indicated by [12]; we get after simplification

[u(r)/V]=8[(1+ n+2nX)− (n+1)j2 −2nXjn+1]/[(n+1)(1+X)G(n, X)]. [27]

Figure 7. Flow curves (DDP/4L) vs (8V/D) for 25.2 vol.% gypsum suspension. Solid curve—Sisko model
[5]: ha =0.023; m=5.643; n=0.2995. Dashed line—[10]: K '=0.7976; n'=0.654.
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Figure 8. Flow curves (DDP/4L) vs (8V/D) for 30.6 vol.% gypsum suspension. Solid curve—Sisko model
[5]: ha =0.0346; m=9.657; n=0.3025. Dashed line—[10]: K '=2.453; n'=0.584.

The expression for Z in [16] for the local stability criterion can be written in terms of the variables
used in the above equations as

Z=(1/2)(DVr/ha)[u(r)/V]j/(1+X). [28]

Taking (dZ/dr)= (dZ/dj)(dj/dr)=0 at transition, when j= jc, we get after simplification

(1+ n+2nX)−3(n+1)j2
c −2n(n+2)Xjn+1

c =0. [29]

[29] gives the value of j= jc when Z attains a maximum. This critical reduced shear rate value
depends on n and X, and must be determined through iterative solution of [29]. Alternatively, it
can be determined graphically, by preparing a plot of X(jc, n) against jc for various values of n.
This is most directly done by solving [29] for X:

X=[(n+1)(j2
c −1)]/2n[1− (n+2)jn+1

c ]. [30]

[30] can now be used to express the transition in terms of the critical Reynolds number since,
as reported earlier, at laminar–turbulent transition Zc =808, regardless of the rheological behavior
of the fluid. This gives

Reac(local)=
202(n+1)(1+X)2G(n, X)

jc[(1+ n+2nX)− (n+1)j2
c −2nXjn+1

c ]
. [31]

2.6. Laminar–turbulent transition for Sisko fluids based on integral stability

To derive the expression for the critical Reynolds number for the Sisko fluid using the integral
stability criterion, we use [20] with the modified Reynolds number, ReS'. With the value V=262.5
corresponding to transition, we get

Reac(integral)=2100I(n, X)/C=2100(1+X)/CG(n, X) [32]
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in which C is given by [19]. The velocity distribution given by [27] is used to determine C for the
Sisko mode. Carrying out the integration and simplifying, we get

C=
1

(1+X)5 $ 2
(n+1)G(n, X)%

3

$(n+1)3

8
+ aX+ bX2 + dX3 + eX4 + kX5% [33]

in which a, b, d, e and k are simple polynomial functions of the Sisko model index n. These are
given in Appendix A.

2.7. Laminar–turbulent transition—comparison with experiment

The experimental laminar–turbulent transition points were determined from the intersections of
the laminar and turbulent flow curves in figures 1 to 8. These data were used to test the
laminar–turbulent transition relationships developed in this work for the Sisko model. For a total
number of 30 different experimentally determined laminar–turbulent transition Reynolds numbers,
we found that the average absolute deviations from experiment of [31] and [32] for the Sisko model
were about 25% and 20% for local and integral stability, respectively.

2.8. Asymptotic forms of equation for wall shear rate for Sisko fluids

We present in this section various asymptotic forms of [13] appropriate to various limits. The
range of interest for n is 0Q nQ 1, and clearly Xq 0.

Approximation for 0QX�1.
It is convenient to let Y=(m/ha)(8V/D)(n−1). Then [13] gives

Y=(m/ha)(8V/D)(n−1) =X[G(n, X)](n−1). [34]

Figure 9. Friction factor–Reynolds number relationship for non-Newtonian suspension flow through
straight pipe.
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For X�1 we have from [14] for G(n, X)

G(n, X)3 (1−3X+6X2 − . . .)$1+40n+2
n+31X+02n+1

2n+21X2 +0 n
3n+11X3%

31+0n−1
n+31X−

n(n−1)
(n+1)(n+3)

X2 +O(X3) 0QX�1 [35]

and

Y(n, X)3X$1+
(n−1)2

n+3
X+O(X2)% 0QX�1. [36]

Also, the inversion of [36] gives

X3Y−
(n−1)2

n+3
Y2 +O(Y3) 0QX�1. [37]

Approximation for X�1
For X�1 we expand the expressions in terms of (1/X). Thus we get

G(n, X)3 4n
(3n+1)

−
2(n−1)

(n+1)(3n+1)
1
X

+O0 1
X21 X�1 [38]

Y30 4n
3n+11

n−1

$X−
(n−1)2

2n(n+1)
+O01

X1% X�1 [39]

and inversion of [39] gives

X303n+1
4n 1

n−1

Y+
(n−1)2

2n(n+1)
+O01

Y1 X�1. [40]

Asymptotic expansions for n0O(1/X)�1
The asymptotic expansions for X�1, given by [35] to [37], are uniformly valid for all values of

0Q nQ 1. The expansions given by [38] to [40] for X�1, however, are strictly valid for nqO(1/X).
The expansions fail when nX0O(1). For X�1 and n0O(1/X)�1, we define z= nX0O(1) and
we get

G(n, X)=01+
n
z1

−3

$ 4n
(3n+1)

+
2(2n+1)

n+1
n
z
+

4(n+2)
n+3 0nz1

2

+ · · · %
34n+20nz1−2n2$6+05z1+053101z1

2

%+ · · ·

34n+02
X1−2n2$6+0 5

nX1+05310 1
nX1

2

%+ · · · n0O(1/X)�1. [41]

Also, in the present case of n0O(1/X)�1, it is more convenient to expand the form Y1/(n−1). In
terms of X this is given by

Y1/(n−1) 3 2X1/(n−1)$2n+01
X1− n2$6+0 5

nX1+05310 1
nX1

2

%+ · · ·%. [42]
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It is clear that [42] for Y(X) provides a transcendental relationship for X(Y). But it is not difficult
to use, because it is valid for n�1. We note that for X�1 it is now possible to construct a uniformly
valid composite approximation applicable to all n in 0Q nQ 1 by additive composition; adding the
respective expansions, for example [38] and [42] for G(n, X), and subtracting the common parts
determined by matching the two expansions. These are not difficult to obtain, but are not given
because they are necessarily transcendental by virtue of the fact that the expansions for
n0O(1/X)�1 were found to be so.

The precision of the foregoing asymptotic expansions depends on the value of n in 0Q nQ 1. A
numerical test of these relationships yields the following results.

(1) [37], valid for X�1, provides an excellent estimate for X(Y) for all n in 0Q nQ 1. The range
of values ofX forwhich the expansion provides a good approximation increases as n increases. Indeed,
the expansion underestimates X(Y) by at most 3% for XE 0.43 when n is as small as 0.01. For n=0.9
the range of validity of the expansion increases to such a degree that it underestimates X(Y) by at
most 3% for XE 12.6.

(2) [40], valid for X�1, provides an approximation for X(Y) when nqO(1/X). For n=0.01 the
expansion overestimates X(Y) by at most 3% for Xe 262. However, the range of validity of the
approximation increases progressively as n increases in 0Q nQ 1. For n=0.9 the equation
overestimates X(Y) by at most 3% when Xe 0.09.

3. CONCLUSIONS

A summary of the principal results and conclusions from this work is as follows.
The friction factor–Reynolds number correlations for the Sisko fluid developed in this work are

very important because many concentrated, fine particulate, non-Newtonian slurries are
describable by this relatively simple three-parameter rheological model. An important attribute of
the model is that the parameters in it can be uniquely determined using rheometric data pertaining
to the entire range of shear rates usually encountered in pipeline transport. This is because the mean
shear rate varies in proportion to the ratio (V/D), while the Reynolds number varies with the
product (VD). Accordingly, provided that small enough capillary tubes are used, laminar flow can
be maintained within the capillary rheometer over shear rates for which the flow in pipelines is
inevitably turbulent. Aside from suspensions, the flow curves of most non-Newtonian fluids,
including solutions and melts, almost always contain regions which are power-law. The friction
factor correlations developed in this work are, therefore, generally useful. The correlations for both
laminar and turbulent flow regimes are capable of predicting pressure losses for non-Newtonian
slurry flow in pipes with deviations comparable to those obtained from correlations or charts
applicable to Newtonian fluids.

It is further noted that the correlations in this work are based on model-specific Reynolds
numbers utilizing Sisko model parameters determined, independently of the pipe flow data, from
rheometric measurements under strictly laminar flow conditions. Both the capillary-tube and the
rotating-cylinder geometries were used in the rheometric characterizations. The model-specific
Reynolds numbers are defined in terms of suspension density for both laminar and turbulent flow
regimes, but whereas the generalized Reynolds number for laminar flow is derived from the steady
state solution of the equations of motion applicable to the Sisko fluid, the Reynolds number for
the turbulent flow regime is based only on the viscosity ha, a measurable material property as well
as a model parameter. This suggests that the pressure loss in the turbulent flow regime for these
non-Newtonian suspensions is determined mainly by the asymptotic high-shear rheological
behavior of the fluid, and is then only a weak function of the fluid viscosity, as manifested by the
inverse (1/4)th power Blasius dependence of friction factor on Reynolds number. It is important
to note that the two factors are not inclusive. The viscosity ha is a fluid property, measured, and
having meaning, under laminar flow conditions, albeit in the limit of high shear. The weaker
dependence of pressure loss on fluid viscosity, on the other hand, is a consequence of the increasing
dominance of inertial over viscous effects which occurs under increasingly turbulent conditions.
This situation, namely the dominating role of inertial effects, will be found to be even more
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prominent for turbulent slurry flow through bends and fittings and other disturbances in the flow,
which enhance turbulence.

The present, rheologically-based continuum approach for prediction of pressure drop for steady
flow in a straight pipe is appropriate to fine particulate slurries which settle sufficiently slowly to
permit meaningful rheological characterization using suitable rheometric devices. For flow through
horizontal straight pipe of dense/coarse, noncolloidal, settling slurries we have previously
developed a noncontinuum, multiphase flow model for prediction of pressure drop (Hsu et al.
1989). Comparison of pressure drops predicted using the present rheologically-based correlations
with those calculated using the multiphase model approach for the gypsum slurries, which contain
particles of a median size overlapping the limits of validity of the two approaches, results in
excellent agreement (Hsu et al. 1989).

REFERENCES

Attal, J. F. (1989) Characterization, rheology and stability of coal–water mixtures. M.S. Thesis in
Chemical Engineering, University of Illinois at Chicago, Chicago, IL, U.S.A.

Bird, R. B., Stewart, W. E. and Lightfoot, E. N. (1960) Transport Phenomena. John Wiley, New
York.

Bird, R. B., Armstrong, R. C. and Hassager, O. (1987) Dynamics of Polymeric Liquids. Vol. 1: Fluid
Mechanics. John Wiley, New York.

Dodge, D. W. and Metzner, A. B. (1959) Turbulent flow of non-Newtonian systems. AIChE J.
5, 189–204.

Hanks, R. W. (1981) Laminar–turbulent transition in pipe flow of Casson model fluids. J. Energy
Resources Tech., Trans. ASME 103, 318–321.

Hanks, R. W. and Dadia, B. H. (1971) Theoretical analysis of the turbulent flow of non-Newtonian
slurries in pipes. AIChE J. 17, 554–557.

Hanks, R. W. and Ricks, B. L. (1974) Laminar–turbulent transition in flow of pseudoplastic fluids
with yield stress. J. Hydronautics 8, 163–166.

Hsu, F.-L., Turian, R. M. and Ma, T.-W. (1989) Flow of noncolloidal slurries in pipelines. AIChE
J. 35, 429–442.

Ma, T.-W. (1987) Stability, rheology and flow in pipes, bends, fittings, valves and Venturi meters
of concentrated non-Newtonian suspensions. Ph.D. Thesis, University of Illinois at Chicago,
Chicago, IL, U.S.A.

Metzner, A. B. and Reed, J. C. (1958) The flow of non-Newtonian fluids—correlation of laminar,
transition and turbulent flow regions. AIChE J. 4, 434–440.

Mishra, P. and Tripathi, G. (1971) Transition from laminar to turbulent flow of purely viscous
non-Newtonian fluids in tubes. Chem. Eng. Sci. 26, 915–921.

Round, G. F. and El-Sayed, E. (1983) Proc. 8th Int. Tech. Conf. on Slurry Transport, San
Francisco, CA, pp. 15 and 111.

Ryan, N. W. and Johnson, M. M. (1959) Transition from laminar to turbulent flow in pipes. AIChE
J. 5, 433–435.

Turian, R. M., Hsu, F. L., Avramidis, K. S., Sung, D. J. and Allendorfer, R. K. (1992) Settling
and rheology of suspensions of narrow-sized coal particles. AIChE J. 38, 969–987.

APPENDIX A

The algebraic functions a, b, d, e and k in [33] are given by the following:

a(n)= (1+4n+5n2 +2n3)− [(3+18n+30n2 +18n3 +3n4)/(n+3)]
+ [(3+24n+42n2 +24n3 +3n4)/(n+5)]− [(1+10n+18n2 +10n3 + n4)/(n+7)] [A1]

b(n)= (1
2 +3n+ 15

2 n2 +5n3)+ [(15n+57n2 +57n3 +15n4)/2(n+2)]
− [(31n+153n2 +153n3 +31n4)/2(n+3)]+ [(6n+42n2 +43n3 +6n4)/(n+5)] [A2]
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d(n)= (3n+8n2 +9n3)− [(12n2 +48n3 +12n4)/(n+3)]+ [(15n2 +42n3 +15n4)/(n+2)]
− [(18n2 +44n3 +18n4)/(3n+5)]+ [(6n2 +12n3 +6n4)/(3n+1)] [A3]

e(n)= (6n2 +7n3)− [(24n3 +24n4)/(3n+1)]+ [(6n3 +6n4)/(2n+1)] [A4]

k(n)=4n3 − [24n4/(3n+1)]+ [12n4/(2n+1)]− [8n4/(5n+3)]. [A5]


